Extra challenge!

If you finish your questions today (10.02.21) or tomorrow (11.02.21) and you still have some time left within your maths hour, you could have a go at this extra challenge! The answers will be shared tomorrow. Try to consider how your knowledge of multiplication can help you, rather than relying solely on a 'trial and error' approach.

Power play

Here is a part of a 100 square.

21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

a) Which three numbers did Lexi multiply together?

b) What were the numbers that Mo multiplied together? What was the answer that Mo got?
c) What numbers did Zac multiply together?

If you multiply any three consecutive numbers the answer will always end in 0,4 or 6 .
True or False?

When I was approaching these questions, I find it really useful to firstly use my knowledge of multiplication to identify what I knew the answer for each section wasn't before I considered what it could be. Here's how I approached it, you may have done it totally differently and that's fine too (:)

If Mo's product ends in a 2 , his number is even.
Straight away this meant that I could discount the odd columns. Odd numbers x odd numbers = odd numbers.

So I was left with the ' 2 ' column, ' 4 ' column, ' 6 ' column, ' 8 ' column and the ' 0 ' column

2 (or more) digit numbers ending in 0 are multiples of ten. When multiples of ten are multiplied together, the product is also a multiple of ten. This meant I knew Mo wasn't multiplying $20 \times 30 \times 40$.

I was still left with the ' 2 ' column, ' 4 ' column, ' 6 ' column and the ' 8 ' column.

I used the same method as I did with Lexi to see if the 'ones' from each of the columns could lead to a product that ended in 2.
$2 \times 2 \times 2=8$, so it wasn't the $22 \times 32 \times 42$
$4 \times 4 \times 4=64$ so it wasn't $24 \times 34 \times 44$
$6 \times 6 \times 6=216$ so it wasn't $26 \times 36 \times 46$
$8 \times 8 \times 8=512$, which ends in 2 . So, Mo must have been multiplying $28 \times 38 \times 48$.
$28 \times 38 \times 48=51,072$ but you didn't need to calculate the answer.

Consecutive numbers means one number after the next.

So the first thing I did was think about all of the

I multiplied three consecutive numbers and got 21,924 .

 consecutive numbers it could be, based on the ones. For example:It could be $21 \times 22 \times 22$ or $31 \times 32 \times 33$-it's the 'ones' numbers that make in consecutive, so I thought about them on their own:
$1 \times 2 \times 3$
$2 \times 3 \times 4$
$3 \times 4 \times 5$
$4 \times 5 \times 6$
$5 \times 6 \times 7$
$6 \times 7 \times 8$
$7 \times 8 \times 9$
$8 \times 9 \times 0$
$0 \times 1 \times 2$ (imagining that the numbers crossed the ten boundary, e.g $30 \times 31 \times 32$)
Then I used my multiplication knowledge to eliminate some options.
When 0 is a factor, 0 is the product
Anything $\times 5=$ a product ending in 5 or 0
I was left with
$1 \times 2 \times 3$
$2 \times 3 \times 4$
$6 \times 7 \times 8$
$7 \times 8 \times 9$
So I calculated these, to see if the product ended in 4, like in Zac's product.
$2 \times 3 \times 4=24$ and $7 \times 8 \times 9=50$
So I knew that Zac's numbers must have either been _ 2 x _ 3 x _ 4 or _ 7×8 x_9
I worked through them:
$22 \times 23 \times 24=12,144 \times 32 \times 33 \times 34=45,408 \times 42 \times 43 \times 44=79,464 \times$
$27 \times 28 \times 29=21,924 \checkmark$ Zac multiplied $27 \times 28 \times 29$

True!

If you multiply any

 three consecutive numbers the answer will always end in 0,4 or 6 . True or False?If you look at all of the consecutive 'ones' numbers that you multiply could have you will get this list:
$0 \times 1 \times 2$
$1 \times 2 \times 3$
$2 \times 3 \times 4$
$3 \times 4 \times 5$
$4 \times 5 \times 6$
$5 \times 6 \times 7$
$6 \times 7 \times 8$
$7 \times 8 \times 9$
$8 \times 9 \times 0$
If you find their products, you will find that all of these products end in either 0,4 or 6 .
$0 \times 1 \times 2=0$
$1 \times 2 \times 3=6$
$2 \times 3 \times 4=24$
$3 \times 4 \times 5=60$
$4 \times 5 \times 6=120$
$5 \times 6 \times 7=210$
$6 \times 7 \times 8=336$
$7 \times 8 \times 9=504$
$8 \times 9 \times 0=0$

